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Abstract

A new, generalized Bernoulli/Timoshenko finite beam element on a two-parameter elastic foundation is presented.

The element stiffness matrix is based on the exact solution of the differential equation governing displacements, and

possesses the ability for an optional consideration of shear deformations, semi-rigid connections, and rigid offsets. In

addition to the proposed stiffness matrix, equivalent element nodal load vectors are developed for handling the external

uniform loading and linear temperature variations. The usefulness of the new element in the analysis of reinforced

concrete or steel structures is documented by three numerical examples.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In modern design and analysis of structures, the su-

perstructure–foundation–soil interaction has to be taken

into account in a sophisticated way, which is sufficiently

accurate but simple enough for practical purposes. In

this context, the concept of a beam resting on an elastic

foundation has been an important tool for the modeling

and analysis of structural, geotechnical, highway and

railroad engineering problems, and extensive research in

this area has been reported in the literature.

In order to model soil behavior, several approaches

have been developed in the past. In the majority of the

proposed solutions, the foundation–supporting soil is

represented on the basis of the well-known Winkler

hypothesis, which assumes the soil to be made up of

continuously distributed, non-connected discrete springs

[1]. Thanks to its simplicity, the Winkler model has been

extensively used to solve many soil–foundation interac-

tion problems and has given satisfactory results for

many practical problems. However, it is a rather crude

approximation of the true mechanical behavior of the

ground material. It�s discontinuous nature gives rise to

the development of various forms of two-parameter

elastic foundation models [2–4], in which the continuity,

i.e., the coupling effect between the discrete Winkler

springs, is introduced by assuming the springs to be

connected by a shear layer, a membrane or a beam. The

two-parameter models describe soil behavior more ac-

curately and yet remain simple enough for practical

purposes.

On the other hand, most reported solutions for

beams on elastic foundations are based on the classic

Bernoulli (Bernoulli–Euler or Kirchhoff) theory [5–11],

thus neglecting the effect of transverse shear deforma-

tions. As a result, such approaches are only acceptable

for slender beams. They may lead to significant errors in

the case of beams with a small length to height ratio,

especially if they are subjected to closely spaced con-

centrated loads that alternate in direction, as well as in

the case of heavy flange beams and beams made out of

sandwich materials. In order to take shear deformations
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into account, a number of solutions have been proposed

for the well-known Timoshenko beam resting on an

elastic two-parameter foundation [12,13].

Another problem encountered in everyday practice

relates to the modeling of rigid joints or, more generally,

of structural elements which can be assumed to behave

as rigid bodies. Especially in the design and analysis of

reinforced concrete foundations, massive footings are

usually modeled by conventional beam elements with

very large values of their moments of inertia. In order to

simulate the elastic soil under the footings, these are

modeled by a number of absolutely rigid beam elements,

supported elastically at their nodes by discrete Winkler

springs or, alternatively, by an absolutely rigid beam

supported at its center by a translational and a rota-

tional elastic spring. In the case of Winkler soil, these

simple modeling techniques yield acceptable results. The

occurrence of numerical instabilities because of high

values attributed to the moments of inertia can be easily

avoided in most situations by an appropriate choice of

these values. However, this method is rather crude and

cannot be applied if a two-parameter soil model is used.

Exact solutions for Bernoulli and Timoshenko beams on

a Winkler foundation with incorporated rigid offsets at

their ends have been recently reported [15]. In the pre-

sent paper exact solutions for beams with rigid offsets

resting a two-parameter foundation are presented.

An additional problem encountered in the design and

analysis of steel structures concerns the modeling of

flexible joint connections. A first approach to this

problem involves the use of beam elements with rota-

tional elastic springs at their ends (e.g. [16,17]). In ad-

dition, if the rigidity of the joints has to be taken into

account, a finite beam element with rigid offsets is also

necessary. The connection between the rigid offsets and

the median segment of the element is achieved by rota-

tional springs of appropriate stiffness. Such semi-rigid

connections may be used for elastically supported

beams. Solutions to this problem are also given in the

present paper.

Nomenclature

A area of beam cross-section

bB width of the median segment of the new el-

ement

bf1, bf2 width of the left and right footing respec-

tively

d1, d2 length of the left and right rigid offset re-

spectively

E Young�s modulus of elasticity for the me-

dian segment

G shear modulus of elasticity for the median

segment

h height of the median segment

I moment of inertia of the median segment

½K� new element�s stiffness matrix

½Kint� median segment�s stiffness matrix

½Ksoil� matrix of soil forces acting on rigid offsets

K int
ij median segment�s stiffness matrix coeffi-

cients

Kij new element�s stiffness matrix coefficients

KS coefficient of sub-grade reaction (kN/m3)

kS first elastic foundation parameter or modu-

lus of sub-grade reaction (kN/m2)

kG second elastic foundation parameter (kN)

KRA;KRB flexural stiffness of the left and right rota-

tional spring respectively

L length of the median segment of the new

element

n shear factor

½P ðqÞ� new element�s load vector for uniform load

½P ðqÞ
int � median segment�s load vector for uniform

load

½P ðDtÞ� new element�s load vector for linear tem-

perature variation

½P ðDtÞ
int � median segment�s load vector for linear

temperature variation

p reaction of the elastic foundation (vertical

sub-grade reaction)

q uniform vertical load

½S� element�s nodal force vector

½Sint� matrix of median segment end forces

½T � displacement transfer matrix due to rigid

offsets (internal nodes-end nodes)

½TKR� displacement transfer matrix due to semi-

rigid connections

½u� element�s nodal displacement vector

½uint� matrix of internal node displacements

VG generalized shear force

w lateral displacement along the element

x coordinate along the beam

dw/dx total rotation of the cross-section (due to

flexure and shear effects)

b shearing slope along the element

u rotation of the cross-section due to the

flexural deformation of the element

a coefficient of thermal expansion

D/1, D/2 magnitude of discontinuity of the bending

slope at internal nodes 2 and 3 respectively

Dt non-uniform temperature variation
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The objective of this paper is to exhaustively address

all topics referred to above by means of a generalized

finite beam element with its corresponding load vectors.

The element is based on the exact analytical solution of

the differential equation describing the problem of

beams on a two-parameter elastic foundation featuring

rigid offsets at the ends. The connection of rigid offsets

to the interior element is implemented by means of ro-

tational springs. The stiffness matrix is formed in a

general way, thus permitting the incorporation of either

a Bernoulli or a Timoshenko beam model. The proposed

new element is characterized as ‘‘generalized’’, due to its

ability to degenerate to various more simple elements.

Specifically, it is possible to ignore the rigid offsets (one

or both), the semi-rigid connections (one or both) and

even the elastic support. This is accomplished by zeroing

certain coefficients in the expressions of the stiffness

matrix, or by forming their limit values. These properties

render the generalized element very useful for structural

analysis computer programs where, with the aid of ap-

propriate ‘‘switches’’, it is possible to produce the de-

sired element each time. In addition to the stiffness

matrix, equivalent element nodal load vectors for uni-

form external load and for temperature variation are

also developed.

The usefulness of the new element in modeling and

analyzing reinforced concrete and steel structures is il-

lustrated by using several numerical examples and by

making comparisons to other, less sophisticated solu-

tions.

2. Description of the new element

The proposed generalized beam element is shown in

Fig. 1(d). It consists of the following three segments

(Fig. 1(d)):

• The two absolutely rigid segments between nodes 1

and 2, and 3 and 4, respectively, which are referred

Fig. 1. (a) Steel frame on reinforced concrete foundation, (b) simplified model of the steel girder, (c) simplified foundation model and

(d) new generalized finite beam element.
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to as the rigid offsets. (In the case of a reinforced con-

crete foundation of a building structure, they may

represent the more or less monolithic footings.)

• The median segment between nodes 2 and 3, which is

a (Bernoulli or Timoshenko) beam element. (In the

case of a reinforced concrete foundation of a building

structure, they may represent the connecting beams

between footings.)

The connection of the median segment to the rigid

offsets is achieved by means of rotational elastic springs

(semi-rigid connections). Rigid offsets and median seg-

ment rest throughout their length on a two-parameter

elastic foundation. The generalized beam element in-

cludes all three beam segments. Note that internal nodes

2 and 3 are auxiliary nodes, which are only used in de-

veloping the stiffness matrix of the new element.

3. Stiffness matrix derivation

The stiffness matrix is derived in two stages. In the

first stage, the ‘‘exact’’ stiffness matrix of the median

segment is formed. This stiffness matrix for the Bernoulli

or the Timoshenko beam element is available from many

sources. In the second stage, which is the main objective

of this paper, the relations between the coefficients of the

stiffness matrix of the median segment to the coefficients

of the stiffness matrix of the new element are formulated.

These equations demonstrate the effect of the rotational

springs and rigid offsets (which are also elastically sup-

ported) on the stiffness matrix of the element.

3.1. First stage

In general, two-parameter elastic foundation models

are based on the following pressure–displacement rela-

tion [2–4]:

pðxÞ ¼ kSw� kG
d2w
dx2

ð1Þ

where w is the lateral deflection, kS is the first foundation
parameter (or modulus of sub-grade reaction), kG is the

second foundation parameter and p is the vertical

foundation reaction.

The differential equation for the deflection curve of a

Bernoulli beam resting on a two-parameter elastic

foundation is [9]

EI
d4w
dx4

� kG
d2w
dx2

þ kSw ¼ q ð2Þ

where EI is the flexural stiffness of the beam and q the

uniform, vertically applied external load.

The analytical solution of the homogeneous form of

Eq. (2) allows calculation of beam fixed-end forces, due

to unit translations and unit rotations imposed at its

nodes. These forces are the coefficients of the exact ele-

ment stiffness matrix.

The exact stiffness matrix for a Timoshenko beam

resting on a two-parameter elastic foundation is derived

by means of the analytical solution of the following two

differential equations:

EI 1

�
þ kG

U

�
d4w
dx4

� kG

�
þ EIkS

U

�
d2w
dx2

þ kSwþ EI

U
d2q
dx2

� q

¼ 0 ð3aÞ

EI 1

�
þ kG

U

�
d4u
dx4

� kG

�
þ EIkS

U

�
d2u
dx2

þ kSu � dq
dx

¼ 0

ð3bÞ

where U ¼ AG=n, with u being the flexural rotation of

the cross-section, A being the cross-section area, G being

the shear modulus of elasticity and n being the shear

factor. Obviously, the form of the analytical solution of

Eqs. (3a) and (3b) depends on the values of the pa-

rameters EI, U, kS, and kG. In the case of the Timo-

shenko beam on a Winkler type (i.e., one-parameter)

foundation, the solution method and the exact stiffness

matrix are developed in [13]. By employing a similar

process, the analytical solution of Eqs. (3a) and (3b) are

obtained.

3.2. Second stage

In order to formulate the relations between the co-

efficients of the median segment stiffness matrix and the

stiffness coefficients of the new element shown in Fig.

1(d), the following procedure must be followed.

At first, the relationships between the displacements

of internal nodes 2 and 3, and those of nodes 1 and 4 are

established. According to Fig. 2(a), these relationships

can be expressed in the following way:

u2

w2

u3

w3

���������

���������
¼

1 0 0 0

d1 1 0 0

0 0 1 0

0 0 �d2 1

���������

���������

u1

w1

u4

w4

���������

���������

þ

�ðKRAÞ�1
0 0 0

0 0 0 0

0 0 �ðKRBÞ�1
0

0 0 0 0

���������

���������

M2

V2
M3

V3

���������

���������
ð4Þ

where M2 and M3 are the bending moments at nodes

2 and 3 respectively, V2 and V3 are the shear forces,

and KRA and KRB are the stiffnesses of the rotational

springs.

Eq. (4) can be expressed in a symbolic matrix form

as
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½uint� ¼ ½T �½u� þ ½TKR�½Sint� ð5Þ

It is worth mentioning that for the absolutely rigid

offsets, where neither flexural nor shear deformations are

allowed, the flexural rotation of the cross-section / co-

incides with the total rotation dw=dx of the deflection

curve, i.e., dw=dx ¼ u. On the other hand, this does not

happen in the median segment of the element, where

dw=dx 6¼ u, due to the presence of shear deformations.

However, in the related literature, the stiffness matrix of

the Timoshenko beam element is commonly expressed in

terms of flexural rotations u at its nodes. Following this

approach, the rotational degrees of freedom at the nodes

of the new element, i.e., nodes 1 and 4, are chosen so as

to correspond to the flexural rotations u of the cross-

sections at the nodes.

Secondly, the relationships between the stresses at

auxiliary nodes 2 and 3, and the stresses at nodes 1 and 4

are formulated. These relationships can be easily derived

from the equilibrium conditions for the free-body dia-

gram of the rigid offsets (Fig. 3):

where KS is the coefficient of sub-grade reaction, and bf1
and bf2 are the widths of left and right footing, respec-

tively.

The coefficient of sub-grade reaction KS with di-

mension kN/m3 must be distinguished from the modulus

of sub-grade reaction kS with dimension kN/m2. The

relationship between KS and kS is given by kS ¼ KSbB,
where bB is the width of the cross-section of the foun-

dation beam.

The terms kGd1 and kGd2 are moments resulting from

the assumptions on which the two-parameter elastic

foundation model is based and are necessary for fulfill-

ing the equilibrium conditions.

Eq. (6) can be expressed in a symbolic matrix form as

½S� ¼ ½T �T½Sint� þ ½Ksoil�½u� ð7Þ

VG is a �generalized shear force� which takes into account

the effects of shearing stresses on the soil medium as well

as on the beam [9]. For the Timoshenko beam element,

this generalized shear force is

M1

VG1

M4

VG4

���������

���������
¼

1 d1 0 0

0 1 0 0

0 0 1 �d2
0 0 0 1

���������

���������

M2

VG2

M3

VG3

���������

���������
þ

1
3
KSbf1d3

1 þ kGd1 1
2
KSbf1d3

1 0 0
1
2
KSbf1d2

1 KSbf1d1 0 0

0 0 1
3
KSbf2d3

2 þ KGd2 � 1
2
KSbf2d2

2

0 0 � 1
2
KSbf2d2

2 KSbf2d2

���������

���������

u1

w1

u4

w4

���������

���������
ð6Þ

Fig. 2. (a) Deformed configuration of the element; Bernoulli beam, (b) detail of the connection joint between the median segment of

the element and the rigid offset, in case of a Timoshenko beam.
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VG ¼ Vbeam þ Vsoil ¼ �EI
d2u
dx2

þ ks
dw
dx

ð8Þ

It is to be noted that since rigid offsets do not deform,

the underlying shear layer remains inactive and does not

transmit any force to them. Consequently, the only

forces that are transmitted to the rigid offsets are the

vertical spring forces, as in the case of the Winkler

model.

Thirdly, the matrix equation defining the force–

deformation relationship (stiffness matrix) is considered.

The general form of this relationship is

Mi

Vi

Mj

Vj

2
664

3
775 ¼

K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

2
664

3
775

ui

wi

uj

wj

2
664

3
775 ð9Þ

or in matrix symbolic form:

½Si� ¼ ½Ki�½ui� ð10Þ

where for the proposed element, Vi 	 VGi and Vj 	 VGj.

For the median segment, Eq. (10) gives:

½Sint� ¼ ½Kint�½uint� ð11Þ

where [Kint] is the already known stiffness matrix of the

median segment.

Similarly, the stiffness relation for the new element

can be written as

½S� ¼ ½K�½u� ð12Þ

where the new element stiffness matrix is yet to be de-

rived.

In the final step, the new element stiffness matrix [K]

is computed by means of an appropriate combination of

the equations mentioned above. From Eq. (5) and Eq.

(11) we obtain

½Sint� ¼ ½Kint�f½T �½u� þ ½TKR�½Sint�g ð13Þ

After some algebra, Eq. (13) gives

½Sint� ¼ f½I � � ½Kint�½TKR�g�1½Kint�½T �½u� ð14Þ

where [I] is the 4� 4 identity matrix.

By combining Eq. (7) and Eq. (14) we obtain

½S� ¼ ½T �Tf½I � � ½Kint�½TKR�g�1½Kint�½T �½u� þ ½Ksoil�½u� ð15Þ

Finally, a comparison of Eq. (12) with Eq. (15) leads

to the formulation of the stiffness matrix of the new el-

ement:

½K� ¼ ½T �Tf½I � � ½Kint�½TKR�g�1½Kint�½T � þ ½Ksoil� ð16Þ

In programming Eq. (16) for computer use, certain

�user switches� can be employed in order to create vari-

ous modeling alternatives and options. As the stiffness

matrix is formed in a general way, it is possible to (a) use

either the Bernoulli or the Timoshenko beam theory and

(b) ignore either the rigid offsets (one or both) and/or the

semi-rigid connections (left, right or both), each time

using the appropriate �switch�. Any such switch is a pa-

rameter of unit value as default, which must be set equal

to zero if the corresponding option is to be neglected.

Now Eq. (16) can be rewritten as

½K� ¼ ½T �Tf½I � � m½Kint�½TKR�g�1½Kint�½T � þ n½Ksoil� ð17Þ

If m ¼ 0, then Eq. (17) gives the stiffness matrix of a

beam element with rigid offsets on an elastic foundation,

but without semi-rigid connections at the internal nodes,

which may be useful in modeling reinforced concrete

foundations made up of monolithic footings and deep

connecting beams. If n ¼ 0, Eq. (17) gives the stiffness

matrix of a beam element with rigid offsets and semi-

Fig. 3. Relationships between the forces at the internal joints and the element end forces.
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rigid connections but without elastic support, which may

be useful in the modeling of steel frames. Finally, if

m ¼ n ¼ 0, Eq. (17) represents the well-known stiffness

matrix of a beam element with rigid offsets [14]. The

terms of the general form of the stiffness matrix [K] are

given in Appendix A.

4. Element nodal load vectors

In this section, the equivalent nodal load vectors for a

uniform vertical load q and for a linear temperature

variation Dt between top and bottom fibers of the beam

are formed (Fig. 4). The load vectors (as well as the

stiffness matrices) are based on the exact solution of the

governing differential equations of the problem and are

derived in two stages. In the first stage, the load vectors

[Pint] for the median segment of the element with rota-

tional springs at its ends are formed using the same

procedure as the one described in Ref. [13]. Afterwards,

the stresses are transmitted through the rigid offsets to

the end nodes of the whole element to form the equiv-

alent element load vectors. Results for load vectors are

given in Appendix B.

5. Numerical examples

To check the efficiency and usefulness of the new

element, three numerical examples are presented. A

simple computer program, written in QBASIC, was

developed for this purpose, analyzing plane frames,

which include elements resting on one- or two-parameter

elastic foundations. In order to compare the results

based on the new element with the results based on the

conventional, classic finite beam element analysis, the

same examples have been solved using different numer-

ical models, through use of the computer program

SAP2000 [18].

Since the choice of numerical values for the coeffi-

cient of sub-grade reaction KS, for the first elastic

foundation parameter kS (kS ¼ KSbB, where bB is the

width of the beam�s cross-section), and for the second

elastic foundation parameter kG is of particular impor-

tance here, some remarks are necessary to clarify the

situation:

(a) One-parameter (Winkler) foundation: If the

foundation soil consists of loose sand, a mean value for

the coefficient of sub-grade reaction is KS ¼ 10000 kN/

m3 (according to Bowles [21, p. 409]). In the first of the

following examples (Winkler foundation), the value

KS ¼ 6628 kN/m3 is used according to Terzaghi [24].

(b) Two-parameter foundation: In this case, the val-

ues of the two parameters kS and kG have to be consis-

tent with each other. However, experimental values for

the second foundation parameter kG are not provided in

the literature and thus, the only available method for an

analytical determination of the second parameter kG is

the method proposed by Vallabhan and Das, based on

the modified Vlasov model (see also Selvadurai [25]).

This method uses experimentally determined values for

the soil modulus of elasticity ES and the Poisson ratio m
and enables the calculation of both foundation para-

meters kS and kG. According to Vallabhan and Das [22],

if ES ¼ 23940 kN/m2 and m ¼ 0:2, the value of kS fluc-

tuates between 268.1 and 1063 kN/m2, and the value of

kG fluctuates between 7850 and 28 004 kN.

In the case of the third example presented in this

paper (loose sand with ES ¼ 17500 kN/m2 and m ¼
0:28), the application of the Vallabhan–Das method

produces the following values: KS ¼ 994:61 kN/m3 and

kG ¼ 14918:52 kN. For a beam width bB ¼ 0:4 m, the

first foundation parameter becomes kS ¼ KSbB ¼ 397:84
kN/m2. These values lie within the limits given in Val-

labhan and Das [22]. The value of the first foundation

parameter kS can also be calculated from a formula

proposed by Biot [19] for plane stress conditions:

kS ¼ 0:710ESðESb4=EIÞ1=3 ðkN=m2Þ

where ES is the soil modulus of elasticity, b ¼ bB=2, EI is
the beam flexural stiffness. Through the application of

this formula, the value of KS becomes KS ¼ kS=bB ¼ 954

kN/m3 which is very near to the one obtained using the

Vallabhan–Das method, i.e., KS ¼ 994:61 kN/m3.

(c) It becomes obvious that in the case of parameters

KS or kS, there is a rather significant gap determined and

analytically calculated values. This seems to be a major

problem as well as an important topic for research.

However, this problem is not addressed here. The only

scope of the present paper is to present a new finite ele-

ment and to analytically investigate its computational ef-

fectiveness. Furthermore, the paper does not investigate
Fig. 4. (a) Uniform vertical load q, (b) linear temperature

variation Dt between top and bottom fibers of the beam.
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the probable superiority of the two-parameter founda-

tion model over the one-parameter (Winkler) founda-

tion model. The presented new finite element can be

used in connection with both of them with similar effi-

ciency.

Example 1. The first example is the reinforced concrete

plane frame shown in Fig. 5(a). Its footings and the

foundation beam between them rest on a Winkler type

elastic foundation and are modeled by a version of the

new element without the semi-rigid connections. The

value of the coefficient of sub-grade reaction is KS ¼
6628 kN/m3. This value is taken from Terzaghi�s tables
[24], which are based on experimental data. Apart from

that, it must be noted that the value of KS ¼ 6628 kN/m3

results from the appropriate corrections suggested by

Terzaghi.

The example in question is also solved by using four

conventional finite beam element models of increasing

mesh density as regards the number N of elements used

to model the foundation beam (Fig. 5(c)).

A comparison of displacements and stresses at the

nodes of the foundation beam (Fig. 6(a) and (b)) indi-

cated that the conventional analysis with N ¼ 3 or 6

classical beam elements is completely insufficient. The

model with N ¼ 12 beam elements yields somewhat

improved results, yet displaying significant divergences

(approximately 5% for bending moments). It was not

until N ¼ 20 classic beam elements were used that an

acceptable approach to the results achieved through the

use of the new element was reached, with divergences of

bending moments and shear forces of less than 15%.

Example 2. The second example is the steel frame

shown in Fig. 5(b). As in Example 1, its footings and the

foundation beam between them rest on a Winkler type

elastic foundation. Two versions of the new element

were used and tested. The first version involves an ele-

ment with rigid offsets and semi-rigid connections but

without elastic support, while the second involves an

element with continuous elastic support but without

semi-rigid connections. This example aims to indicate

the advantages of the new element over conventional

modeling techniques for semi-rigid connections. Two

such models are shown in Fig. 7(a). In the conventional

analysis of this example, a relatively dense mesh con-

sisting of 20 classical beam elements (N ¼ 20) was used

to model the foundation beam (Fig. 5(d)). Therefore,

divergences between the analysis using the new element

Fig. 5. (a) Reinforced concrete frame (Examples 1 and 3), (b) steel frame on reinforced concrete foundation (Example 2), (c) and (d)

discretization of foundation beam and footings by conventional beam elements for Examples 1 and 3 respectively.
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and the conventional analysis can be attributed exclu-

sively to the modeling techniques for the semi-rigid

connections. The coefficient of sub-grade reaction is es-

timated using Biot�s formula [19] for plain stress condi-

tions and is equal to KS ¼ 1366:8 kN/m3:

KS ¼ 0:710
ES

bB


 �
ESb4B
16EI

� �1=3
) KS

¼ 0:710
17500

0:3


 �
17500� 0:34

16ð2:9� 107Þ0:0085

� �1=3
) KS

¼ 1366:8 kN=m3

The value ES ¼ 17500 kN/m3 corresponds to thick loose

sand [21].

Three different values for the rotational stiffness of

the semi-rigid connections [20] were used. These values

correspond to three different types of beam-to-column

connections, as indicated in Fig. 7(b).

The comparison of rotations and bending moments

(Fig. 8(a) and (b)) indicates that the conventional

modeling techniques of semi-rigid connections lead to

results similar to those obtained from the analysis using

the new element. The advantage of the latter consists in

its inherent simplicity and in avoiding more or less

complicated modeling details (Fig. 7(a)). Furthermore,

in order to achieve the same level of accuracy, the con-

ventional analysis requires 35 beam elements (see Figs.

5(d) and 7(a)), while the analysis using the new element

requires only 4 such elements.

Example 3. As a third example, the frame shown in Fig.

5(a) subjected to vertical loads only is analyzed under

the assumption that the foundation soil consists of a

loose sand layer, 20 m in thickness, resting on hard

Fig. 6. Example 1: (a) deviations of the displacements of the four models relative to the reference solution using the proposed new

element, (b) deviations of stresses at the nodes of foundation beam of the four models relative to the reference solution using the

proposed new element.
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bedrock. The elasticity parameters used for the sand

were Es ¼ 17500 kN/m2 and m ¼ 0:28 [21]. The purpose

of this example is

• to demonstrate the inability of the one-parameter

model, i.e., the Winkler model, to produce satisfac-

tory solutions,

• to check the efficiency of the proposed two-parameter

model by comparing it to results obtained by more

elaborate finite element analyses.

With this objective in mind, six different models are

used:

Models FEM1 and FEM2. The soil under the foun-

dation beam is modeled by a rather fine finite element

mesh, which consists of 2600 solid elements (Fig. 9).

Zero displacement boundary conditions are assumed at

the sand–bedrock boundary, while the FE-mesh covers

the 20 m thick sand layer. In the upper half of the layer,

a finer mesh is used. The transition to the cruder mesh

underneath is accomplished by triangular elements. In

order to check the adequacy of the vertical discretiza-

tion, analyses have been carried out in which the number

of elements in the vertical direction was doubled. A

comparison of the results showed practically no differ-

ence. According to a suggestion made by Liao [23], the

total horizontal size of the FE-mesh is taken to be equal

to 2� ð9LÞ, where 2L is the total length of the founda-

tion beam (see Fig. 5b). With L ¼ 9 m, the horizontal

size of the FE-mesh becomes 2� ð9� 9Þ ¼ 2� 81 m.

The discretization in the horizontal direction was em-

pirically determined (after some trial and error). Its

adequacy was verified by examining the horizontal dis-

placements at the horizontally unconstrained vertical

mesh boundaries. The displacements at those bound-

aries are practically zero, which means that an increase

in the horizontal size of the mesh would have no influ-

ence on the results. The foundation beam is discretized

by 46 conventional beam elements. The connection be-

tween beam and shell elements is established by vertical

truss elements, which transmit vertical forces only.

Therefore, a valid comparison between the results ob-

Fig. 7. Example 2: (a) two-different ways of modeling the semi-rigid connections using additional auxiliary elements, (b) three types of

steel frame connections.
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tained by FEM1 and FEM2 and those obtained by the

other four models is possible. In model FEM1, all de-

grees of freedom producing out-of-plane strain are set to

zero, i.e., uz ¼ ux ¼ uy ¼ 0. The displacements ux, uy

and /z, which correspond to the remaining degrees of

freedom, produce a state of plane strain. Model FEM1

Fig. 8. Example 2: (a) deviations of the rotations at nodes 2 and 3 from the solution using the proposed new element, (b) deviations of

bending moments at nodes 2 and 3 from the solution using the proposed new element.

Fig. 9. Example 3: finite element meshes for models FEM1 and FEM2.
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provides a solution, which is considered accurate, thus

serving as a reference solution. Model FEM2 results

from model FEM1 by restraining all horizontal in-plane

degrees of freedom, thus achieving a better simulation of

the assumptions on which the Vlasov model is based.

The Vlasov model. The proposed beam element is

used on a two-parameter foundation. The parameter

values KS ¼ 994:61 kN/m3 and kG ¼ 14918:52 kN have

been calculated from E and m by using the modified

Vlasov method for plane strain conditions [22], accord-

ing to which the soil on both sides of the foundation

beam is taken into account.

The Pasternak model. The proposed beam element is

used on a two-parameter foundation. Parameters kS and
kG have the same values as previously. However, the

influence of the soil on both sides of the foundation

beam is ignored [4].

Models Winkler 1 and Winkler 2. The proposed beam

element is used on a one-parameter foundation. The

Winkler 1 model is employed with KS ¼ 994:61 kN/m3

(as in the Vlasov and Pasternak models) and the Winkler

2 model is used with the slightly different value KS ¼ 954

kN/m3 (obtained from the analytical method given by

Biot [19] for plane stress conditions).

Results for stresses and displacements at connection

joint 1 between the rigid footing and the foundation

beam are given in Fig. 10. Both Winkler models, as well

as the slightly better Pasternak model, display diver-

gences of up to 80%, thus failing to adequately ap-

proximate the reference solution FEM1. The Vlasov

model, in which the soil on both sides of the foundation

beam is taken into account, gives considerably better

results. However, it is acceptable only with respect to

stresses and especially bending moments (divergence of

8.9% with respect to M1). Finally, model FEM2 shows

divergences smaller than 10% and is very close to the

reference solution.

6. Conclusions

A new generalized, exact beam finite element for use

in the analysis of reinforced concrete or steel structures

has been presented. In its full form, the element is com-

posed of a flexible Bernoulli or Timoshenko beam with a

left and/or right rigid offset, resting wholly on a one- or

two-parameter elastic foundation. Furthermore, the in-

ternal connections between the flexible beam and its rigid

offsets can be chosen to be either rigid or elastically semi-

rigid. All these element characteristics are optional and

can be combined so as to meet the actual modeling re-

quirements for the specific problem under consideration.

The versatility of the present element renders it suitable

for implementation in structural analysis computer pro-

grams where, with the aid of appropriate ‘‘switches’’, it is

possible to produce the desired element characteristics

each time. It is noteworthy that all stiffness matrices and

Fig. 10. Example 3: Deviations (with respect to reference solution FEM1) of displacements and stresses at foundation beam node 1 for

five different elastic foundation models.
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load vectors are based on the analytical solution of the

underlying differential equations for the beam on an

elastic (one- or two-parameter) foundation and are

therefore exact. No use of interpolation functions or

other approximations is made.

The usefulness of this new element has been illus-

trated by three examples. In the first example, the ef-

fectiveness of the proposed element in modeling beams

on an elastic one-parameter (Winkler) foundation is

shown in comparison with conventional finite beam el-

ements. In the conventional analyses the foundation

beam had to be discretized into at least 20 elements in

order to achieve the same level of accuracy as the pro-

posed element. In the second example, the reliability of

the new element, as well as the ease in modeling semi-

rigid connections and rigid offsets was illustrated. When

using conventional finite elements, rather complicated

techniques had to be applied in order to model semi-

rigid joints with acceptable accuracy. In the third ex-

ample, the new element is compared to 2D finite element

solutions for the modeling of the elastic soil, which serve

as reference solutions. If the new element is used in

connection with the Winkler or the Pasternak founda-

tion model, divergences of up to 80% in the results arise.

If the two-parameter model according to Vlasov is ac-

tivated, the divergences diminish in value and do not

exceed 30% for stresses and 50% for displacements. Of

course, these divergences from the reference solution

must be attributed to shortcomings in the Winkler,

Pasternak or Vlasov foundation models which are in-

corporated into the proposed element, and not to the

element itself. The element can be used with the same

ease, as far as modeling is concerned, and with similar

computational efficiency in connection with all of them.

The examples presented indicate the versatility of the

new element in the analysis of any type of linear struc-

tures, the simplicity which it offers in the modeling of

foundation beams and of steel structures with semi-rigid

connections, and finally its reliability, which is due to the

fact that it is based on the exact solution of the differ-

ential equation which governs the problem of a beam on

a two-parameter elastic foundation.

Appendix A. Proposed element stiffness matrix coeffi-

cients
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Appendix B. Equivalent element nodal load vectors

B.1. Uniform vertical load q

B.1.1. Timoshenko beam

The nodal load vector for a Timoshenko beam ele-

ment resting on a two-parameter elastic foundation is

derived from the analytical solution of Eqs. (3a) and

(3b). For realistic values of parameters EI, U, kS, and kG,
as used in practical applications, the analytical solution

takes the following form:

wðxÞ ¼ C1e
Rx cosðQxÞ þ C2e

Rx sinðQxÞ þ C3e
�Rx cosðQxÞ

þ C4e
�Rx sinðQxÞ þ ðq=ksÞ ðB:1Þ

uðxÞ ¼ C0
1e

Rx cosðQxÞ þ C0
2e

Rx sinðQxÞ þ C0
3e

�Rx cosðQxÞ
þ C0

4e
�Rx sinðQxÞ ðB:2Þ

where

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS

4EIh

r
þ kS

4Uh
þ kG
4EIh


 �s

Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS

4EIh

r
� kS

4Uh
þ kG
4EIh


 �s
and h ¼ 1þ kG

U

Because of the rotational springs at nodes 2 and 3

and due to the absolutely rigid offsets at both sides, the

boundary conditions for the median segment are

Node 2 : /2 ¼ M2=KRA and w2 ¼ 0 ðB:3Þ

Node 3 : /3 ¼ M3=KRB and w3 ¼ 0 ðB:4Þ

For bending moments M2 and M3 the classical rela-

tionship of strength of materials yields:

MðxÞ ¼ �EIðdu=dxÞ ðB:5Þ

Following the procedure described in detail by Cheng

and Pantelides [13], it can be shown that the constants in

Eqs. (B.1) and (B.2) are related as follows:

C0
1 ¼ x1C1 þ x2C2 ðB:6Þ

C0
2 ¼ �x2C1 þ x1C2 ðB:7Þ

C0
3 ¼ �x1C3 þ x2C4 ðB:8Þ

C0
4 ¼ �x2C3 � x1C4 ðB:9Þ

where

x1 ¼
RA1 þ QA2

R2 þ Q2
; x2 ¼

�QA1 þ RA2

R2 þ Q2
;

A1 ¼ hðR2 � Q2Þ � kS
U
; A2 ¼ 2RQh

Boundary conditions (B.3) and (B.4), and Eqs. (B.6)–

(B.9) constitute a (8� 8) linear equation system. Its so-

lution produces the values of constants C1–C4 and C0
1–C

0
4.

Finally, the application of Eqs. (B.2) and (B.5) allows the

calculation of bending moments at nodes 2 and 3:

M2 ¼ � 4EIq
kSDQ

ðx2
1 þ x2

2Þ½Rn� Qm� EI

KRB

ðx2R
�

þ x1QÞ½n0 � m0� þ ½x1n� x2m�
�

ðB:10Þ

where n ¼ sinðQLÞ, n0 ¼ cosðQLÞ, m ¼ sinhðRLÞ, m0 ¼
coshðRLÞ. The bending moment M3 results from Eq.

(B.10) by replacing KRB by KRA.

The generalized shear forces are determined by using

a similar procedure, starting from Eq. (8):

VG2 ¼
4q

kSDQ

½EIðx2
1 þ x2

2ÞR1 � kGR2�

R1 ¼
ðEIÞ2

KRAKRB

F1

"
þ EI

KRA

F2 þ
EI

KRB

F3 � F4

#

R2 ¼
ðEIÞ2

KRAKRB

F1G

"
þ EI

KRA

F2G � EI

KRB

F3G � F4G

#

ðB:11Þ

where

F1 ¼ ðR2 þ Q2Þðx2Rþ x1QÞðn0 � m0ÞðRnþ QmÞ
F2 ¼ ðR2 � Q2Þðx1n� x2mÞðQm� RnÞ þ 2RQðn0 � m0Þ

� ðx1Qn0 � x2Rm0Þ
F3 ¼ 2RQ½ðx1n� x2mÞðRmþ QnÞ þ ðx1Qm0 � x2Rn0Þ

� ðn0 � m0Þ�
F4 ¼ 2RQðn0 � m0Þðx1n� x2mÞ
F1G ¼ ðx2Rþ x1QÞðn0 � m0Þðx1n� x2mÞðR2 þ Q2Þ
F2G ¼ ðx1n� x2mÞðR2x1n� Q2x2mÞ � ðx2Rþ x1QÞ

� ðn0 � m0ÞðRx2m0 þ Qx1n0Þ � RQðx1mþ x2nÞ
� ðx1nþ x2mÞ

F3G ¼ ðx2R� x1QÞ½ðRmþ QnÞðx1n� x2mÞ þ ðn0 � m0Þ
� ðx1Qm0 � x2Rn0Þ�

F4G ¼ ðx2R� x1QÞðn0 � m0Þðx1n� x2mÞ

DQ ¼ ð2EIÞ2

KRAKRB

ðx2Rþ x1QÞ2ðm2 þ n2Þ

þ 4EI
1

KRA

�
þ 1

KRB

�
ðx2Rþ x1QÞ

� ðx2mm0 � x1nn0Þ þ 4ðx2
2m

2 � x2
1n

2Þ

The generalized shear force VG3 results from Eq.

(B.11) by replacing KRB with KRA and vice versa.
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B.1.2. Bernoulli beam

The load vector for a Bernoulli beam element results

from the load vector of the respective Timoshenko beam

element by forming the limit value of the latter, as shear

rigidity U ¼ AG=n approaches infinity. The application

of this procedure on parameters R, Q gives:

lim
U!1

ðRÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS
4EI

r
þ kG
4EI

s2
4

3
5 ¼ RB

lim
U!1

ðQÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS
4EI

r
� kG
4EI

s2
4

3
5 ¼ QB

ðB:12Þ

As a result, the load vectors for Bernoulli beam ele-

ment results from the Timoshenko beam relations de-

veloped above, by replacing parameters R and Q by RB

and QB respectively.

B.1.3. Consideration of the rigid offsets

In order to determine the load vector of the new ele-

ment, the relationships between the stresses at auxiliary

nodes 2 and 3, and those at nodes 1 and 4 must be

formulated. These relationships are derived from the

equilibrium conditions associated with the free-body

diagram of the rigid offsets:

M1

VG1

M4

VG4

���������

���������
¼

1 d1 0 0

0 1 0 0

0 0 1 �d2
0 0 0 1

���������

���������

M2

VG2

M3

VG3

���������

���������
þ q
2

�d2
1

�2d1
d2
2

�2d2

���������

���������
ðB:13Þ

or in symbolic matrix form:

½P ðqÞ� ¼ ½T �T½P ðqÞ
int � þ ðq=2Þ½Tq� ðB:14Þ

B.2. Linear temperature variation Dt between top and

bottom fibers of the beam

B.2.1. Timoshenko beam

In this case (Fig. 4b), the load vector results from Eqs.

(3a) and (3b) by setting q ¼ 0. The main difference with

the case of the uniform load concerns in the relationship

from which the bending moments are given. Instead of

Eq. (B.5), the following equation must now be applied:

MðxÞ ¼ �EI
du
dx



þ aDt

h

�
ðB:15Þ

By applying a similar procedure, as in the case of the

uniform load, the following results are obtained:

M2 ¼
ðEIÞ2aDt
hDDt

ðx2Rþ x1QÞ
2EI

KRAKRB

ðx2R
�

þ x1QÞ

� ½ðn02 � n2Þ � ðm2 þ m02Þ� þ 4x1n
n0

KRA



þ m0

KRB

�

� 4x2m
n0

KRB



þ m0

KRA

��
þ EIaDt

h
ðB:16Þ

Note that DDt 	 DQ. The bending moment M3 results

from Eq. (B.16) by replacing KRB by KRA.

VG2 ¼ � 4EIaDt
hDDt

EI

KRAKRB

ðx2R
�

þ x1QÞðn0 � m0Þ

� ½EIF1 � kGðRnþ QmÞ� � ðkGF2 � EIF3Þ
�

ðB:17Þ
where

F1 ¼ ðR2 � Q2Þðx1nþ x2mÞ þ 2RQðx1m� x2nÞ

F2 ¼ R
x1

KRA

n2
�

� x2

KRB
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�
� Q

x2

KRA
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�
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KRB
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KRA
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2m

2Þ

� 2RQ x2n
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KRA

n

�

� x2

KRB

m
�
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KRA

m



� x1

KRB

n
��

Shear force VG3 results from the Eq. (B.17) by re-

placing KRB with KRA and vice versa.

B.2.2. Bernoulli beam

The load vector can be easily developed by proceeding

in a similar way to that used in the case of the vertical

uniform load (Section B.2).

B.2.3. Consideration of the rigid offsets

By applying a procedure similar to the one explained

in Section B.1.3, the following relation can be derived in

symbolic form (see Eq. (25) for q ¼ 0):

½P ðDtÞ� ¼ ½T �T½P ðDtÞ
int � ðB:18Þ
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